Using Combinatorial Optimization within Max-Product Belief Propagation

نویسندگان

  • John C. Duchi
  • Daniel Tarlow
  • Gal Elidan
  • Daphne Koller
چکیده

In general, the problem of computing a maximum a posteriori (MAP) assignment in a Markov random field (MRF) is computationally intractable. However, in certain subclasses of MRF, an optimal or close-to-optimal assignment can be found very efficiently using combinatorial optimization algorithms: certain MRFs with mutual exclusion constraints can be solved using bipartite matching, and MRFs with regular potentials can be solved using minimum cut methods. However, these solutions do not apply to the many MRFs that contain such tractable components as sub-networks, but also other non-complying potentials. In this paper, we present a new method, called COMPOSE, for exploiting combinatorial optimization for sub-networks within the context of a max-product belief propagation algorithm. COMPOSE uses combinatorial optimization for computing exact maxmarginals for an entire sub-network; these can then be used for inference in the context of the network as a whole. We describe highly efficient methods for computing max-marginals for subnetworks corresponding both to bipartite matchings and to regular networks. We present results on both synthetic and real networks encoding correspondence problems between images, which involve both matching constraints and pairwise geometric constraints. We compare to a range of current methods, showing that the ability of COMPOSE to transmit information globally across the network leads to improved convergence, decreased running time, and higher-scoring assignments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial Optimization

The max-product Belief Propagation (BP) is a popular message-passing heuristic for approximating a maximum-a-posteriori (MAP) assignment in a joint distribution represented by a graphical model (GM). In the past years, it has been shown that BP can solve a few classes of Linear Programming (LP) formulations to combinatorial optimization problems including maximum weight matching, shortest path ...

متن کامل

Maximum Likelihood Graph Structure Estimation with Degree Distributions

We describe a generative model for graph edges under specific degree distributions which admits an exact and efficient inference method for recovering the most likely structure. This binary graph structure is obtained by reformulating the inference problem as a generalization of the polynomial time combinatorial optimization problem known as b-matching, which recovers a degree constrained maxim...

متن کامل

Linear programming analysis of loopy belief propagation for weighted matching

Loopy belief propagation has been employed in a wide variety of applications with great empirical success, but it comes with few theoretical guarantees. In this paper we investigate the use of the max-product form of belief propagation for weighted matching problems on general graphs. We show that max-product converges to the correct answer if the linear programming (LP) relaxation of the weigh...

متن کامل

Tightness of LP via Max-product Belief Propagation

We investigate the question of tightness of linear programming (LP) relaxation for finding a maximum weight independent set (MWIS) in sparse random weighted graphs. We show that an edge-based LP relaxation is asymptotically tight for Erdos-Renyi graph G(n, c/n) for c ≤ 2e and random regular graph G(n, r) for r ≤ 4 when node weights are i.i.d. with exponential distribution of mean 1. We establis...

متن کامل

Minimum Weight Perfect Matching via Blossom Belief Propagation

Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006